PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice.

نویسندگان

  • Mei Tran
  • Denise Tam
  • Amit Bardia
  • Manoj Bhasin
  • Glenn C Rowe
  • Ajay Kher
  • Zsuzsanna K Zsengeller
  • M Reza Akhavan-Sharif
  • Eliyahu V Khankin
  • Magali Saintgeniez
  • Sascha David
  • Deborah Burstein
  • S Ananth Karumanchi
  • Isaac E Stillman
  • Zoltan Arany
  • Samir M Parikh
چکیده

Sepsis-associated acute kidney injury (AKI) is a common and morbid condition that is distinguishable from typical ischemic renal injury by its paucity of tubular cell death. The mechanisms underlying renal dysfunction in individuals with sepsis-associated AKI are therefore less clear. Here we have shown that endotoxemia reduces oxygen delivery to the kidney, without changing tissue oxygen levels, suggesting reduced oxygen consumption by the kidney cells. Tubular mitochondria were swollen, and their function was impaired. Expression profiling showed that oxidative phosphorylation genes were selectively suppressed during sepsis-associated AKI and reactivated when global function was normalized. PPARγ coactivator-1α (PGC-1α), a major regulator of mitochondrial biogenesis and metabolism, not only followed this pattern but was proportionally suppressed with the degree of renal impairment. Furthermore, tubular cells had reduced PGC-1α expression and oxygen consumption in response to TNF-α; however, excess PGC-1α reversed the latter effect. Both global and tubule-specific PGC-1α-knockout mice had normal basal renal function but suffered persistent injury following endotoxemia. Our results demonstrate what we believe to be a novel mechanism for sepsis-associated AKI and suggest that PGC-1α induction may be necessary for recovery from this disorder, identifying a potential new target for future therapeutic studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skeletal Muscle PGC-1α Is Required for Maintaining an Acute LPS-Induced TNFα Response

Many lifestyle-related diseases are associated with low-grade inflammation and peroxisome proliferator activated receptor γ coactivator (PGC)-1α has been suggested to be protective against low-grade inflammation. However, whether these anti-inflammatory properties affect acute inflammation is not known. The aim of the present study was therefore to investigate the role of muscle PGC-1α in acute...

متن کامل

PGC-1α promotes exercise-induced autophagy in mouse skeletal muscle.

Recent evidence suggests that exercise stimulates the degradation of cellular components in skeletal muscle through activation of autophagy, but the time course of the autophagy response during recovery from exercise has not been determined. Furthermore, the regulatory mechanisms behind exercise-induced autophagy remain unclear, although the muscle oxidative phenotype has been linked with basal...

متن کامل

Histone lysine-crotonylation in acute kidney injury

Acute kidney injury (AKI) is a potentially lethal condition for which no therapy is available beyond replacement of renal function. Post-translational histone modifications modulate gene expression and kidney injury. Histone crotonylation is a recently described post-translational modification. We hypothesized that histone crotonylation may modulate kidney injury. Histone crotonylation was stud...

متن کامل

Suppression of mitochondrial biogenesis through toll-like receptor 4-dependent mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling in endotoxin-induced acute kidney injury.

Although disruption of mitochondrial homeostasis and biogenesis (MB) is a widely accepted pathophysiologic feature of sepsis-induced acute kidney injury (AKI), the molecular mechanisms responsible for this phenomenon are unknown. In this study, we examined the signaling pathways responsible for the suppression of MB in a mouse model of lipopolysaccharide (LPS)-induced AKI. Downregulation of per...

متن کامل

Mitochondrial biogenesis in the acutely injured kidney.

Mitochondrial dysfunction within the tubular epithelium has been implicated in the pathogenesis of acute kidney injury. Inflammatory, ischemic, or toxic insults dysregulate mitochondrial dynamics, resulting in mitochondrial swelling, fission, and apoptosis. The coordinated processes of generating healthy mitochondria and clearing damaged organelles may contribute to the preservation and restora...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 121 10  شماره 

صفحات  -

تاریخ انتشار 2011